Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A dataset consisting of numerically simulated oceanic velocities and sea surface height changes, provided conjointly from Eulerian and Lagrangian points of view, is made available as cloud-optimized archives on a cloud storage platform for unrestricted access. The Eulerian component of the dataset comprises oceanic velocity components at 0 m and 15 m depth, as well as total and steric sea surface height changes, obtained at hourly time steps for one year, with an approximate horizontal resolution of 1/25 degree on an irregular global geographical spatial grid, from the HYbrid Coordinate Ocean Model. The Lagrangian component of the dataset comprises the trajectories of particles advected in the Eulerian velocity field of the model. The particles were advected forward and backward for 30 days from a regular 1/4 degree grid in order to achieve 60-day long trajectories at 0 m and 15 m depths, with start times separated by 30 days, in 11 releases. This integrated dataset may help to link Eulerian and Lagrangian observational perspectives.more » « less
- 
            The RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) programme has produced a continuous time series of the Atlantic Meridional Overturning Circulation (AMOC) at 26N that started in April 2004. This release of the time series covers the period from April 2004 to February 2023. The 26N AMOC time series is derived from measurements of temperature, salinity, pressure and water velocity from an array of moored instruments that extend from the east coast of the Bahamas to the continental shelf off Africa east of the Canary Islands. The AMOC calculation also uses estimates of the transport in the Florida Strait derived from sub-sea cable measurements calibrated by regular hydrographic cruises. The component of the AMOC associated with the wind driven Ekman layer is derived from ERA5 reanalysis. This release of the data includes a document with a brief description of the calculation of the AMOC time series and references to more detailed description in published papers. The 26N AMOC time series and the data from the moored array are curated by the British Oceanographic Data Centre (BODC). The RAPID-MOCHA-WBTS programme is a joint effort between NERC in the UK (Principal Investigator Ben Moat since 2021, Eleanor Frajka-Williams since 2020 to 2021, David Smeed 2012 to 2020, and Stuart Cunningham from 2004 to 2012), NOAA (PIs Ryan Smith and Denis Volkov) and NSF (PIs Prof. Bill Johns and Prof. Shane Elipot, Uni. Miami) in the USA.more » « less
- 
            Abstract Internal waves generated by the interaction of the surface tides with topography are known to propagate long distances and lead to observable effects such as sea level variability, ocean currents, and mixing. In an effort to describe and predict these waves, the present work is concerned with using geographically distributed data from satellite altimeters and drifting buoys to estimate and map the baroclinic sea level associated with the M2, S2, N2, K1, and O1tides. A new mapping methodology is developed, based on a mixedL1/L2-norm optimization, and compared with previously developed methods for tidal estimation from altimeter data. The altimeter and drifter data are considered separately in their roles for estimating tides and for cross-validating estimates obtained with independent data. Estimates obtained from altimetry and drifter data are found to agree remarkably well in regions where the drifter trajectories are spatially dense; however, heterogeneity of the drifter trajectories is a disadvantage when they are considered alone for tidal estimation. When the different data types are combined by using geodetic mission altimetry to cross validate estimates obtained with either exact-repeat altimetry or drifter data, and subsequently averaging the latter estimates, the estimates significantly improve on the previously published HRET8.1 model, as measured by their utility for predicting sea level and surface currents in the open ocean. The methodology has been applied to estimate the annual modulations of M2, which are found to have much smaller amplitudes compared to those reported in HRET8.1, and suggest that the latter estimates of these tides were not reliable. Significance StatementThe mechanical and thermodynamic forcing of the ocean occurs primarily at very large scales associated with the gravitational perturbations of the sun and moon (tides), atmospheric wind stress, and solar insolation, but the frictional forces within the ocean act on very small scales. This research addresses the question of how the large-scale tidal forcing is transformed into the smaller-scale motion capable of being influenced by friction. The results show where internal waves are generated and how they transport energy across ocean basins to eventually be dissipated by friction. The results are useful to scientists interested in mapping the flows of mechanical energy in the ocean and predicting their influences on marine life, ocean temperature, and ocean currents.more » « less
- 
            What's Changed 🔎 type comparison with isinstance by @philippemiron in https://github.com/Cloud-Drift/clouddrift/pull/491 🧹 Update type comparison in ragged.py by @selipot in https://github.com/Cloud-Drift/clouddrift/pull/497 🧹 Update random number generator in gdp1h and gdp6h adapters by @selipot in https://github.com/Cloud-Drift/clouddrift/pull/496 🐛 fix locationtype bug in dataset by @kevinsantana11 in https://github.com/Cloud-Drift/clouddrift/pull/494 Update .zenodo.json by @selipot in https://github.com/Cloud-Drift/clouddrift/pull/498 ++ increment version (v0.40.0) by @kevinsantana11 in https://github.com/Cloud-Drift/clouddrift/pull/499 Full Changelog: https://github.com/Cloud-Drift/clouddrift/compare/v0.39.0...v0.40.0more » « less
- 
            Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.5° N is carried by the zonally averaged overturning circulation, and an even larger fraction of the heat transport variability (approx. 95%) is explained by the variability of the zonally averaged overturning. A physically based separation of the heat transport into large-scale AMOC, gyre and shallow wind-driven overturning components remains challenging and requires new investigations and approaches. We review the major interannual changes in the AMOC and MHT that have occurred over the nearly two decades of available observations and their documented impacts on North Atlantic heat content. Changes in the flow-weighted temperature of the Florida Current (Gulf Stream) over the past two decades are now taken into account in the estimates of MHT, and have led to an increased heat transport relative to the AMOC strength in recent years. Estimates of the MHT at 26.5° N from coupled models and various surface flux datasets still tend to show low biases relative to the observations, but indirect estimates based on residual methods (top of atmosphere net radiative flux minus atmospheric energy divergence) have shown recent promise in reproducing the heat transport and its interannual variability.This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’.more » « less
- 
            This dataset of Harmonic Constants for Baroclinic Tide Prediction was produced by Edward Zaron (Oregon State University) and Shane Elipot (University of Miami). It provides sea surface height and ocean surface currents associated with the predictable astronomical tide at the M2, S2, N2, K1, and O1 frequencies. The tidal harmonic constants, in-phase and quadrature with respect to the equilibrium potential, are provided on a latitude/longitude at 1/20-deg resolution. Using the software available at the Github repository, the dataset can be used to predict baroclinic tidal sea surface height and surface ocean currents at arbitrary time and location throughout the world oceans.more » « less
- 
            Abstract A dataset of sea surface temperature (SST) estimates is generated from the temperature observations of surface drifting buoys of NOAA’s Global Drifter Program. Estimates of SST at regular hourly time steps along drifter trajectories are obtained by fitting to observations a mathematical model representing simultaneously SST diurnal variability with three harmonics of the daily frequency, and SST low-frequency variability with a first degree polynomial. Subsequent estimates of non-diurnal SST, diurnal SST anomalies, and total SST as their sum, are provided with their respective standard uncertainties. This Lagrangian SST dataset has been developed to match the existing and on-going hourly dataset of position and velocity from the Global Drifter Program.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
